2008年 10月 27日 ( 1 )

形式システムの文字列を自然数によって表現すること 2

『ゲーデル、エッシャー、バッハ』で解説されているMIUシステムについて、これを文字列ではなく数字で表現することの意味を考えてみたいと思う。これは、ゲーデルの証明におけるゲーデル数の表現の解説として受け取ることが出来る。形式システムとして文字列で表現されている自然数論を、数の間に成立する関係を文字列の表現にしてしまおうというアイデアの構造を理解するための解説として考えてみようと思う。文字列の解釈として、ある意味では自然言語での表現の意味に受け取れる自然数論を、数の間に成立する命題として解釈してしまおうというアイデアを直感的に理解するために、MIUシステムと自然数論の間に成立する同型写像を見てみよう。

さて、MIUシステムは次のように語られていた。


記号  M,I,U
公理  MI
規則
 1 xIが定理ならば、xIUは定理である。
 2 Mxが定理ならば、Mxxは定理である。
 3 任意の定理において、IIIはUで置き換えることが出来る。
 4 任意の定理において、UUは除くことが出来る。


このM,I,Uという3つのアルファベットで表現される文字列を、3つの異なる数字で表現して、数字の表現のシステムにおいても、MIUシステムが持つ構造が同じ形で反映されるように表現してみよう。M,I,Uの3つの異なるアルファベットに、3つの異なる数字を与えるのは、これは異なってさえいれば、つまり区別が出来れば何でもいい。これがゲーデル数に当たるものになる。

More
[PR]
by ksyuumei | 2008-10-27 10:24 | 論理